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A Survey of Graph Cuts/Graph Search Based
Medical Image Segmentation

Xinjian Chen, Senior Member, IEEE, and Lingjiao Pan

Abstract—Medical image segmentation is a fundamen-
tal and challenging problem for analyzing medical im-
ages. Among different existing medical image segmentation
methods, graph-based approaches are relatively new and
show good features in clinical applications. In the graph-
based method, pixels or regions in the original image are
interpreted into nodes in a graph. By considering Markov
random field to model the contexture information of the
image, the medical image segmentation problem can be
transformed into a graph-based energy minimization prob-
lem. This problem can be solved by the use of minimum
s-t cut/ maximum flow algorithm. This review is devoted to
cut-based medical segmentation methods, including graph
cuts and graph search for region and surface segmentation.
Different varieties of cut-based methods, including graph-
cuts-based methods, model integrated graph cuts methods,
graph-search-based methods, and graph search/graph cuts
based methods, are systematically reviewed. Graph cuts
and graph search with deep learning technique are also
discussed.

Index Terms—Graph cuts (GCs), graph search (GS), med-
ical image, segmentation.

I. INTRODUCTION

M EDICAL image segmentation has received much re-
search attention due to its valuable applications in clin-

ical studies. In particular, medical image segmentation can be
used for guiding computer-assisted diagnosis and treatment and
quantitatively monitoring of disease progression [1]–[5]. De-
spite several decades of research work and many key advances,
several challenges still remain in this area. These challenges can
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be attributed to several factors. First, the anatomical structures
of human organs are complex. They may consist of several
different structures with different intensities, as seen for ex-
ample in the kidnet, which consists of four major structures:
renal cortex, renal column, renal medulla, and renal pelvis. Sec-
ond, adjacent organs or organ structures may be connected and
have very similar intensity. Third, boundaries between adjacent
organs, such as the spleen and liver, may often be blurred. Fi-
nally, image artifacts and signal-degrading noises can confound
segmentation techniques. Therefore, efficient, robust, and auto-
matic segmentation of anatomy on radiological images is still
very challenging.

There many current medical image segmentation methods:
thresholding method [6]–[10], region growing method [11]–
[14], edge detection method [15]–[17] are the most commonly
used. Along with these traditional methods, there are various
advanced approaches, including model-based methods, partial
differential equations (PDE)-based methods, and graph-based
methods. The representatives in model-based group are active
shape models (ASM) [18]–[22] and active appearance models
(AAM) [23]–[27]. The ASM/AAM methods use “landmarks”
to represent shape and principal component analysis (PCA) to
capture the major modes of variation in shape observed in the
training datasets. In PDE-based methods, level sets are an im-
portant category of techniques [28]–[32]. They calculate the
desirable segmentation result by evolving initial parametric
curves in the continuous space according to the energy func-
tion until the energy function is minimized. Graph-based seg-
mentation approaches play an important role in medical im-
age segmentation. Typical graph-based segmentation algorithms
include minimum spanning tree (MST)-based methods [33]–
[36], shortest-paths-based methods [37]–[41], graph-cuts (GCs)
approaches [42]–[53], among others. Among all the graph-
based segmentation methods, GCs are relatively new and ar-
guably the most powerful mechanisms [54]. A detail discussion
and comparison of these segmentation methods can be found
in [55]–[60].

Despite much effort devoted to the study of medical image
segmentation methods, little work has been done to review the
work in cut-based field. In this review, we mainly focus on cut-
based medical segmentation methods, including GCs and graph
search (GS) for region and surface segmentation separately.
Compared to other documents that cover the theoretical aspects
of image processing and analysis through the use of graphs in
the representation and analysis of objects [137], [138], our paper
has some novel points.
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1) This paper systematically reviews cut-based methods,
which are designed for specific biomedical imaging ap-
plications, especially GCs technique and GS technique
for region and surface segmentation. Different varieties
of cut-based methods (including GCs-based methods,
model integrated GCs methods, GS-based methods, and
GS /GCs-based methods) are systematically reviewed.
We not only cover the basic theory of GCs and GS but
also discuss the relationship and differences between GCs
and GS.

2) This paper not only introduces optimal single-surface,
single-object, multisurface, and multiobject image
segmentation methods, but also adds the discussion of
multimodality segmentation. We systematically review
the research for dealing with the cosegmentation problem.
How to fully utilize the characteristics of multimodality
medical images is introduced and the different ways to
construct the graph are discussed.

3) Many new algorithms and concepts that have been re-
cently published are included in this paper. We cover
work for biomedical imaging applications using GCs and
GS method combine with the deep learning technique.
How to combine the deep learning technique with GCs
and GS method and how to embody the robustness of
deep learning while retaining the advantage of the tra-
ditional graph-based methods can be studied from these
reviewed works.

The rest of this review is organized as follows. In Section II,
we review medical image segmentation approaches using GCs.
In Section III, GCs-based hybrid methods are described. In Sec-
tion IV, we present medical image segmentation approaches
using GS. In Section V, how to synergistically combine the
GS and GCs methods to solve more complex and challeng-
ing medical image segmentation problems are well discussed.
In the final section, these graph-based medical image segmen-
tation approaches are concluded, and some issues related to
the future of the cut-based medical image segmentation are
discussed.

II. GCS-BASED SEGMENTATION

A. Background

Graph-based segmentation approaches play an important role
in medical image segmentation. A graph interprets pixels or
regions in the original image into nodes in the graph. Then,
the segmentation problem can be transformed into a labeling
problem which requires assigning correct label to each node
according to its properties. Markov random field (MRF) is
successfully used in computer vision and machine learning to
model contexture information of pixels. This contexture infor-
mation provides a mechanism for obtaining image properties.
Combined with the Bayesian maximum a posterior (MAP) esti-
mation, the MAP–MRF framework [61] formulates the labeling
problem as a graph-based minimization problem. GCs provide a
flexible optimization tool to solve the minimization problem
with computational efficiency.

Fig. 1. Illustration of graph construction for simple 2-D image.
(This figure is from Boykov’s ECCV 2006 tutorial. http://www.csd.
uwo.ca/faculty/yuri/Presentations/ECCV06_tutorial_partI_yuri.pdf.)

A graph G = (V, E) is a general structure consisting of a set of
nodes (or vertexes) V corresponding to pixels/voxels of original
image and a set of arcs (or edges) E connecting neighboring
nodes. Every arc has a nonnegative weight or cost representing
a kind of measurement of quantity based on the property of two
neighboring vertexes connected by edge. A cost of a directed
edge may differ from the cost of the reverse edge. A simple two-
dimensional (2-D) image example is shown in Fig. 1. In addition
to nodes set V, there are two special terminal nodes, called
source s and sink t which represent “object” and “background”
separately in biobject segmentation. The arcs set E in a graph G
includes two kinds of arcs. The first type namely n-links where
“n” stands for “neighbor,” which connects neighboring pixels.
The second type t-links where “t” stands for “terminal,” which
connects pixels and terminals.

An s/t cut in a graph G is a partitioning of V into two disjoint
subsets S and T such that all object voxels are connected to an
object terminal node s and all background voxels are connected
to a background terminal node t. The goal is to find the best cut
that could give an optimal result according to the segmentation
requirement. A cut with the minimal cost is the minimal cut and
is also the best cut. The best cut can be obtained by minimizing
the following energy function which consider both regional and
boundary properties

E (L) =
∑

p∈P

Rp (Lp) +
∑

(p,q)∈N

Bpq (Lp, Lq ) . (1)

In the above equation, Lp is the label of pixel p in an image
P. The first term is a regional term and Rp(Lp) is the penalty
to assign label Lp to pixel p. If labels are correctly assigned to
all the pixels, the region energy function should reach the min-
imal value. The second term is a boundary term Bpq (Lp, Lq ),
which can be interpreted as a penalty for discontinuity between
p and q. Generally speaking, Bpq (Lp, Lq ) is large when p and
q are similar. And Bpq (Lp, Lq ) is close to zero when p and
q are totally different. In another word, if p and q are simi-
lar, then the probability that they belong to the same object is
high. Otherwise, p and q may belong to different objects. There-
fore, boundary energy is small if neighboring pixels p and q are
different. As mentioned before, there are two kinds of edges: n-
links and t-links. The n-links connect neighboring pixels. Their
cost can represent the boundary characteristic and can be de-
rived from the boundary term. The t-links connect pixels and
terminals. Their cost represents the regional characteristic and
can be obtained from the regional term.
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Several algorithms can be used to solve this combinatorial op-
timization problem [62]–[65]. Most of them can be categorized
in one of the following two groups: push relabel methods [66]
and augmenting path methods [62]. Boykov et al.’s augmenting-
path-based algorithm [54] shows better performance compared
to other algorithms. Before s/t GCs approach, computing global
optima was only possible for some 2-D object segmentation
methods [67]. Up to now, s/t GCs technique and its variants
have been widely used to solve many 3-D segmentation prob-
lems in medical image areas.

B. Single-Object Segmentation

In medical image, specific tissues or organs of interest usually
need to be extracted for medical diagnosis. In the single-object
segmentation case, it is a binary labeling problem. This problem
can be solved efficiently with GCs in polynomial time when
Bpq is a submodular function, i.e., Bpq (0, 0) + Bpq (1, 1) ≤
Bpq (0, 1) + Bpq (1, 0) [68]. The early work was done by
Boykov et al. where single object or multiobjects were seg-
mented in both 2-D and 3-D environments [42]. This work was
further extended later [54], [67]. Since in a medical image, or-
gans may not have sufficiently distinct regional properties, hard
constrain that identify object and background seeds is quite
necessary to further constraint the search region. Note that users
can input seeds interactively. According to desired segmenta-
tion results, new seeds can be added to correct segmentation
imperfections. Boykov’s algorithm can be simply summarized
into four steps.

1) Create an edge-weighted graph according to the image
size and dimension.

2) Input initial object and background seeds.
3) Associate appropriate edge cost.
4) Use graph optimization algorithm to solve the minimum

s/t cut problem.
According to different application, there are two key issues in

GCs. One is how to define the hard constrain to initial the seg-
mentation and another is how to design the energy function for
minimization. Several other GCs-based research works to seg-
ment single object in a medical image have been published later
[69]–[76]. The main difference is that they use different hard
constrain and energy function for their own applications. For ex-
ample, Chen et al. [70] presented a semisupervised approach for
liver computed tomography (CT) segmentation based on GCs
framework. In their work, the hard constraints were obtained
according to the knowledge of liver characteristic appearance
and anatomical location. The energy function considered both
knowledge-based similarity measurement and a path-based spa-
tial connectivity measurement. Their model was evaluated on
MICCAI2007 liver segmentation challenge datasets and some
other data from the hospital. Ye et al. [77] proposed an auto-
matic GC segmentation method for lesions in CT using a mean
shift super-pixel. They used a 5-D joint spatial, intensity, and
shape mean shift clustering to produce super-pixels comprised
of intensity and shape index mode maps. The initial object and
background seeds were automatically obtained based on shape
index concentrations. And their novel energy formulation con-

sidered both intensity and shape information. Wolz et al. [75]
extended Boykov’s algorithm to the simultaneous segmentation
of a series of magnetic resonance (MR) image acquired from
the same subject by extending the graph defined by the energy
function from 3-D to 4-D. Shimizu et al. [76] proposed two new
submodular energies, including shape constrained energy and
neighboring structure constrained energy for GCs. Kolmogorov
et al. [68] studied what energy functions can be minimized via
GCs. Grady et al. [78] studied the effect of weights a topology
on the construction of graphs.

C. Multiobjects Segmentation

Multiobjects segmentation has two situations. The first is to
segment multiobjects which belong to the same tissue or organ.
For example, the doctor needs to investigate three blood ves-
sels in cardiac MR data. Therefore, we have to segment these
blood vessels out. Although it is a multiobject segmentation,
if we consider the three blood vessels as the same object, then
the virtual problem is still a binary labeling problem which
can be solved by above-mentioned single-object segmentation
methods. Some example of multiobject segmentation in this
case was shown by Boykov et al. [42]. The second is to seg-
ment multiobjects which belong to different tissues or organs.
In this case, the number of labels for assigning to graph nodes is
more than two. It is a multilabeling GCs problem virtually. The
standard GCs algorithm can find the global optimal solution for
binary labeling problem. However, in the multilabeling segmen-
tation case, the minimization of the energy function becomes
NP-hard. In order to deal with the multiobjects segmentation
problem, Boykov et al. [79] proposed the α-expansion-move
method and αβ-swap-move method. Although these algorithms
cannot find the exact optimal, an approximate optimal solution
can be found instead. By using these methods, many multiob-
jects medical image segmentation problems were solved. Chen
et al. [46] proposed an automatic anatomy segmentation scheme
for body region. The α-expansion-move method was used as the
optimization method to delineate the liver, spleen, left kidney,
and right kidney simultaneously for abdominal CT dataset. Us-
ing this method, calcaneus, tibia, cuboid, talus, and navicular
for foot magnetic resonance imaging (MRI) dataset were seg-
mented successfully as well. Figs. 2 and 3 demonstrate the seg-
mentation results by the α-expansion-move method. According
to that paper, the delineations within body regions of clinical
importance can be accomplished quite rapidly within 1.5 min.
The same idea was also used for multiobject recognition of 3-
D anatomical structures [80]. Based on the α-expansion-move,
Linguraru et al. [81] extended basic GCs and proposed a 4-D
graph-based method to segment four abdominal organs from
multiphase CT data simultaneously. However, the α-expansion
method is not practical when the number of objects is too
large, leading to an excessive number of expansions that require
very high computational complexity. Kofahi et al. [82] pro-
posed a novel GCs-based algorithm incorporating the method
of α-expansion and graph coloring to solve automatic cell
nuclei detection and segmentation problem in histopathology
images.
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Fig. 2. Experimental results for multiorgan segmentation are shown
in three different anatomical levels for CT abdominal dataset. The first
column shows original images slices; the second column indicates the
recognized organs; and the third column shows the delineation results
yielded by the proposed IGCASM. The contours in the third column
show manually delineated organ boundaries. All of the images have
been cropped for the best view; original original image size is (512 ×
512).

Fig. 3. Experimental results for multiorgan segmentation are shown in
three different anatomical levels for foot MRI dataset. The first column
shows original images slices; the second column indicates the recog-
nized organs; and the third column shows the delineation results yielded
by the proposed IGCASM. The contours in the third column show man-
ually delineated bone boundaries. All of the images have been cropped
for the best view; original original image size is (512 × 512).

D. Multimodality Segmentation

In some practical applications, single-modality medical im-
age cannot provide enough information for radiotherapy treat-
ment planning. For example, the tumor has poor boundary in
positron emission tomography (PET) images and low contrast
in CT images. Therefore, accurate tumor segmentation in PET

Fig. 4. Constructed graph with two subgraphs GPET and GCT and d-link
arcs encoding the context penalties.

and CT images is challenging. Multimodality imaging technolo-
gies are widely used to solve this problem. Take PET-CT as an
example, PET-CT effectively integrates the two modalities by
making full use of the superior contrast of PET images and supe-
rior spatial resolution of CT images. It is possible to acquire both
anatomic and functional images of a patient in one single pro-
cedure [83]. Although multimodality medical images have been
routinely used in clinic, the automatic segmentation tools are
still very limited. Most of the existing segmentation algorithms
only work for single-modality medical images. Therefore, auto-
matic and accurate segmentation approaches for multimodality
medical image are quite necessary. Several research works in
this area have been published [84]–[89].

Han et al. [86] formulated the joint segmentation problem as
an MRF-based segmentation of the image pair with a new energy
term that penalized the segmentation difference between PET
and CT to achieve tumor segmentation in PET and CT simul-
taneously. The global optimal solution of the cosegmentation
energy function was achieved by computing a single maximum
flow. Based on Han’s method, Song et al. [88] proposed an algo-
rithm for optimal cosegmentation of tumor in PET-CT images
by reducing the size of the constructed graph in Han’s paper
from three subgraphs to two subgraphs. Considered that the tu-
mor volume defined in PET image may not be identical to that
defined in CT image, they also employed a soft context cost
term to obtain two different segmented tumor contours in PET
image and CT image. Motivated by Song’s method, a cosegmen-
tation algorithm for lung tumors on PET-CT images based on
random walk and GC was recently proposed [89]. In this work,
random walk was utilized as an initial preprocessor to provide
object seeds for GCs segmentation on PET and CT images.
Then, the cosegmentation problem was formulated as an energy
minimization problem which can be solved by max-flow/min-
cut method. Different from the standard GCs algorithm, a graph
including two subgraphs and a special link was constructed as
shown in Fig. 4. One subgraph was for the PET image and an-
other was for the CT image. Each subgraph contained n-links,
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t-links, and the special link d-links that encoded a context term,
which penalized the difference of the tumor segmentation on
the two modalities. To fully utilize the characteristics of PET
and CT images, a novel energy representation was devised. PET
energy cost, CT energy cost, and the context cost were all in-
cluded in the energy function by considering downhill feature
and 3-D derivate feature. The downhill feature which was inter-
graded into the PET energy function had great contributions to
produce accurate lesion segmentation from PET images and the
downhill feature can help to identify the location of the tumor
and distinguish the ambiguous area which had similar intensity
to the tumor. The 3-D derivate feature enhanced the tumor struc-
tures and weakened the background field. Fig. 5 shows some of
the segmentation results.

E. GCs With Models

In recent years, there has been an increasing interest in inte-
grating models prior into GCs segmentation framework. GCs
approaches have the ability to compute a globally (bilabel-
ing case) or approximate optimal solutions and can enforce
piecewise smoothness while preserving relevant sharp discon-
tinuities. However, they are interactive methods. The manual
recognition to locate foreground and background object seeds
is required through user-interactions. User-input seed points of-
fer good recognition accuracy, especially in 2-D case. However,
the segmentation results can be unpredictable along weak edges
which always happen in medical images and the user action
specifies only roughly the location of the centers of the objects.
Neither orientation and scale, nor geographical layout can be ex-
actly defined by user interaction. As an alternative to the manual
methods, model-based methods can be employed for initializa-
tion/recognition. The advantage of model methods is that even
when some object information is missing due to shadowing ar-
tifact or speckle, such gaps can be filled by drawing upon the
prior information present in the model. Soler et al. [90] esti-
mated the position of an organ model by using its histogram.
Brejl et al. [91] extended the Hough transform to incorporate
variability of shape for 2-D segmentations. Although attempt-
ing to translate anatomical information into the segmentation
framework is promising [25], [90]–[95], these approaches have
many drawbacks, such as converging to a local minimum during
optimization, large search space, high computational cost, and
infeasible platform for multiobject segmentation. The combina-
tion of the complementary strengths of GCs and model methods
can overcome the weakness of the component methods and
achieve a more powerful segmentation tool, where the superior
performances and robustness over each of the components are
beginning to be well demonstrated.

Vu et al. [96] defined a simple fixed shape prior as energy on a
shape distance with popular level set approaches. Freedman and
Zhang [97] incorporated a shape template into the GCs formula-
tion as a distance function. Malcolm et al. [98] imposed a shape
model on the terminal edges and performed min-cut iteratively
starting with an initial contour. Leventon et al. [99] integrated
a deformed shape into GCs segmentation, where the shape
prior is deformed based on the Gaussian distribution of some

Fig. 5. Three different comparative segmentation results of lesions are
shown in each column. The segmentation results on PET (blue) and
ground truth (red) are overlaid. (a)–(c) The results by GC conducted
solely on PET images. (d)–(f) Segmentation results conducted solely
on CT images. (g)–(i) Segmentation results by random walk. (j)–(l) Im-
proved cosegmentation GC method. (m)–(o) Traditional cosegmentation
GC method (Song’s method [88]). (p)–(r) The results conducted by ran-
dom walk cosegmentation. (s)–(u) Segmentation results conducted by
the method in [89].
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Fig. 6. Experimental results for three slice levels of liver segmentation.
The left column is the MOAAM initialization result; the right is the IGC–
OAMM result in which the red contour represents reference segmen-
tation: green represents reference segmentation and the blue contour
represents segmentation by the proposed method.

predefined geometrical shape statistics. Kohli et al. [100] used
a simple articulated stickman model together with a conditional
random field as the shape prior for performing simultaneous
segmentation and 3-D pose estimation of a human body from
multiple views. Lempitsky et al. [101] used nonparametric ker-
nel densities to model a shape prior and integrated into the GCs.
Saito et al. [140] optimized the joint segmentation using both
of GCs and the shape and location priors.

Integrating the ASM and AAM into GCs also shows advan-
tages. Chen and Bagci [46] proposed a fully automatic 3-D
anatomy segmentation method with low computation cost. In
this method, an iterative GC active shape model (IGCASM)
algorithm was used for object delineation, which effectively
combines the rich statistical shape information embodied in
ASM with the globally optimal delineation capability of the GC
method. The object shape information that generated from the
initialization step was integrated into the GCs cost function as a
3-D shape term. This IGCASM method is a 3-D generalization
of 2-D GCASM method [102], which is used for 2-D image
delineation. This method was tested on a clinical abdominal CT
data set with 20 patients and a foot MRI dataset with 11 images.
Another novel method combined the AAM, live wire, and GCs
for abdominal 3-D organ segmentation [48]. In this method,
AAM was used to provide the landmarks to the live wire which
in turn improved the shape model of AAM. The segmentation
results of liver are illustrated in Fig. 6. The preliminary results of
these hybrid methods show that it is feasible to explicitly bring

prior 3-D statistical shape information into the GC framework
and the hybrid methods show improvement on delineation and
can provide practical operational time on clinical images.

III. GRAPH SEARCH

Previously, we have discussed the methods for region seg-
mentation in a medical image. However, sometimes in the med-
ical image, the object required to be segmented is not a region
but a 3-D surface. Optimally identifying 3-D object boundaries
represented by surfaces is an important task in medical image
segmentation and quantitative analysis. The previous discussed
GCs method can easily handle the region segmentation problem;
however, it is difficult to handle multiple coupled surfaces seg-
mentation. In this section, we introduce another graph theoretic
approach, called graph search, to segment surfaces in medical
image data. GCs and GS are all cut-based algorithm. The main
difference is reflected in how to construct the graph. GS is a
sophisticated extension of the s/t GC. Both of them need to
construct a graph at first and then try to find the minimum cut.
However, their way of constructing the graph is different which
we will discuss in the following part.

The basic idea of GS is to transform the optimal surface
detection problem into seeking a minimum closed set in a node-
weighted directed graph. The key to transform the optimal sur-
face detection problem into seeking a minimum closed set in
a graph is based on the important observation that any feasi-
ble surface in a volumetric image uniquely corresponds to a
nonempty closed set in a node-weighted directed graphs with
the same cost [103]. And the minimum closed set problem is
to search for a closed set with the minimum cost, which can
be solved by computing a minimum s-t cut. Using this idea, Li
et al. proposed the 3-D graph-based optimal surface segmenta-
tion method which is capable of detecting multiple interacting
surfaces simultaneously [104]. This method and its variations
were successfully applied to a variety of medical imaging appli-
cations, especially retinal layer segmentation of macular optical
coherence tomography images [105]–[115]. However, it was
limited by the terrain-like shape requirement.

A. Single-Surface Detection

For single-surface detection, the volumetric image is defined
as a 3-D matrix I(x, y, z) with image size X, Y, Z. And the sur-
face is defined by a function S(x, y), where x ∈ (0,. . . , X − 1),
y ∈ (0, . . . , Y − 1), S(x, y) ∈ (0, . . . , Z − 1). Two smooth-
ness parameters Δx and Δy are designed to guarantee surfaces
connectivity in 3-D. More precisely, Δx defines the maximum
of |S(x + 1, y) − S(x, y)| and Δy defines the maximum of
|S(x, y + 1) − S(x, y)|. A cost function c(x, y, z) which is in-
versely related to the likelihood that the desired surface con-
tains the voxel is defined. The cost of a surface is the total cost
of all voxels on the surface. Therefore, the optimal surface is
the one with the minimum cost among all feasible surfaces. A
node-weighted directed graph G (V, E) is constructed for the
volumetric image. In graph G, every node V corresponds to one
and the only one voxel in I (x, y, z) whose cost w(x, y, z) is
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Fig. 7. Illustration of graph construction for single-surface detection.

calculated as follows:

w (x, y, z) =

{
c (x, y, z) , if z = 0

c (x, y, z) − c (x, y, z − 1) , otherwise.
(2)

The arcs of G consist of two types: intracolumn arcs which
connect each node with its immediate neighbor below and inter-
column arcs which are constructed according to the smoothness
constraints. Fig. 7 shows the construction of a graph. So that
the problem of optimal surface detection can be transformed to
find a minimum weight closed set by computing a minimum s/t
cut [116], [117]. GS for single-surface detection was success-
fully applied to solve the problem of lung tissue segmentation
in CT images of subjects with pathology [115], retinal vessel
boundary delineation on fundus images [112], optic disc cup
and rim segmentation in 3-D OCT scans [114], retinal layers
segmentation in spectral domain optical coherence tomography
(SD-OCT) scans of eyes with serous retinal pigment epithelial
detachments [110], etc.

B. Multiple Surfaces Detection

For simultaneously segmenting two or more distinct but in-
terrelated surfaces, the optimality is determined by the inherent
costs and smoothness properties of individual surfaces as well
as surfaces interrelations. Therefore, another set of arcs called
intersurface arcs are needed to model the pairwise relations be-
tween surfaces. Two parameters δl ≥ 0 and δu ≥ 0 are used as a
surface separation constraint to represent the minimum distance
and the maximum distance between two surfaces separately. The
multiple optimal surfaces could be solved simultaneously as a
single s/t cut problem by using the maximum-flow algorithm.
Li et al. [104] applied GS method to ultrasound images and
simultaneously segmented lumen-intima and media-adventitia
surfaces in intravascular ultrasound datasets. Haeker et al. [118]
extended this method and used it for macular layer segmenta-
tion in 3-D OCT images. Song et al. [108] reported a novel
algorithm for simultaneous detection of multiple surfaces us-
ing both shape and context prior information based on pre-
vious GS framework. And their approach showed statistically

significant improvement of segmentation accuracy compared
to earlier GS method that was not utilizing shape and context
priors. Some of their experiments results are shown in Fig. 8.
To segment renal cortex, Li et al. [127] extended the multiple
surface GS approach. Compared to the traditional multiple sur-
faces GS approach, it allowed nonuniform sampling distances
and physical separation constrains instead of the traditional
fixed sampling distance and numerical separation constraints.
Their simulation results show that the improved multiple sur-
face GS approach can better separate the renal cortex and renal
column.

However, as pointed in [128], these optimal surface detection
methods construct the graph and formulate the cost function
independently which may lead to ineffective multiple surfaces
detection. Therefore, Xiang et al. further improved Li’s renal
cortex segmentation approach [127]. In Xiang’s method, a new
cost function was formulated based on multiscale boundary
detection and a nonuniform graph was constructed. As shown in
Fig. 9, each node of a column in Go for the outer surface or Gi

for the inner surface was sampled along the gradient direction in
Euclidean distance field of an initial kidney. The sampling steps
for each vertex on the outer or inner surface were determined
by the distance to the desirable surface. They designed a linear
function to map boundary information into a step size, i.e.,
high boundary information value map to small step size and
vice versa. Therefore, sample points are denser in the regional
candidate boundaries while they are sparser further from
candidate boundaries. Since this approach can control sampling
steps, the segmentation accuracy for renal cortex can be
improved.

C. Graph Search-Graph Cuts

GS methods can be successfully applied to surface segmenta-
tion and GCs methods are widely used for the segmentation of
region object. Synergistically combine the GS and GCs methods
could be applied to solve more complex and challenging med-
ical image segmentation problems. Dolejšı́ et al. [119] showed
a semiautomated method to segment the 3-D fluid-associated
abnormalities in the retina, so-called symptomatic exudate-
associated derangement (SEAD), from 3-D spectral OCT retinal
images of subjects suffering from exudative age-related macular
degeneration (AMD). AMD is the primary cause of blindness
and vision loss among adults [120]. SEAD including intraretinal
fluid, subretinal fluid, and pigment epithelial detachment is the
main manifestations of AMD. The treatment of AMD is primar-
ily guided by the amount of fluid. Therefore, automated fluid
segmentation is quiet necessary. This method had two steps.
In the first step, retinal layers were segmented by the optimal
surface algorithm [105], [106]. In the second step, the identified
layers were used to constrain the segmentation of fluid filled
retinal regions using GCs [67]. However, this method required
manual interaction and mis-segmentation of layers in the first
step which reduced the accuracy of SEAD segmentation. Chen
et al. [121] further improved it and reported a fully 3-D auto-
mated method which effectively combined GS and GCs methods
for segmenting the SEADs and layers simultaneously. In Chen’s
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Fig. 8. Intraretinal layer segmentation in 3-D OCT images. (a) A 2-D slice from 3-D retinal OCT dataset. (b) Seven manually labeled surfaces
(1–7). (c) Segmentation achieved using the former graph searching approach with only hard constraints—surfaces 2, 3, 4, 5. (d) Segmentation
achieved using the proposed algorithm with shape and context prior penalties. (From Song [108].)

Fig. 9. Nonuniform graph construction. (a) The initialized outer and inner surfaces. (b) The proposed nonuniform graph for optimal surface
detection. (c) The refined outer and inner surfaces by using Xiang’s nonuniform graph for optimal surface detection.

Fig. 10. Illustration of graph construction on a 2-D example. (a) Final constructed graph G which consists of three subgraphs GSS, GR , and GSI.
Note only a part of arcs is shown here. Each node in GSS and GSI is connected to either the source S if the weight <0 or the sink T if the weight >
0; and each node in GR is connected to both S and T. (b) Geometric constraints between surfaces GSS and GR . (c) Geometric constraints between
surfaces GR and GSI.

method, an automatic voxel classification based on the texture
features was used for initialization following the success of
their previous works [122], [123]. Probability constraints from
the initialization were effectively integrated into the later GS
-GCs method to further improve the graph-based segmentation
accuracy. The cost function was designed as follows:

E (f) = E (Surfaces) + E (Regions) + E (Interactions) (3)

where E(Surfaces) represents the cost associated with the seg-
mentation of all surfaces, E(Regions) represents the cost associ-
ated with the segmented regions, and E(Interactions) represents
the cost of constraints between the surfaces and regions. Proba-
bility constraints from the initialization were integrated into the

region term. Superior surface SS and inferior surface SI were
included in the interaction term to constrain the region R. For
the surfaces SS and SI, subgraphs GSS and GSI were constructed
by the GS method [103], respectively. For the region term, the
third subgraph GR was constructed following the GC method
[67]. Probability constraints from the initialization were used to
define the source and sink seeds for the graphs. These three sub-
graphs are merged together to form a single s/t graph G which
can be solved by a min-cut/max-flow technique [67]. Fig. 10
shows the graph construction. The simulation results showed
that compared with the traditional GCs and GS method, the pro-
posed probability constrained GS -GCs method achieved better
performance.
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Fig. 11. Outline of the CNN-GS algorithm. (From Fang et al. [133].)

IV. CONCLUSION AND DISCUSSION

A. Conclusion

Accurate, robust, and automatic medical image segmenta-
tion is an essential component for computer-assisted diagno-
sis and treatment. Although much work has been done in this
research area, medical image segmentation is still a challeng-
ing task due to the complex structure of anatomical objects,
boundary characteristics of the adjacent organs, and image ar-
tifacts and noise resulting from the image acquisition process.
GCs and GS techniques are two graph-based segmentation ap-
proaches which are successfully applied for 3-D medical image
segmentation. This paper systematically reviewed representa-
tive GCs/GS-based methods for medical image segmentation.
These GCs/ GS-based methods solved the region and surface
segmentation problems in medical image processing and can be
applied to guide computer-assisted diagnosis and treatment and
quantitatively monitor disease progression.

GCs technique has become very popular for region segmen-
tation for medical image due to its ability to compute a globally
(bilabeling case) or approximate optimal solutions and can en-
force piecewise smoothness while preserving relevant sharp dis-
continuities. It use hard constrains from the “object” and “back-
ground” seeds and additional soft constraints from boundary
information, region information or shape information, etc.

GS technique is another graph-theoretic-based approach that
has been successfully applied to solve surfaces segmentation
problem in medical image field. It converts the surface segmen-
tation problem into seeking a minimum closed set in a node-
weighted directed graph and solves the minimum closed set by
computing a minimum s-t cut.

B. Discussion

Although GCs/ GS methods and their variants have been re-
ceiving big success in medical image segmentation, there are
still some limitations for the clinic applications. A common
problem of graph-based approaches is the computation com-
plexity. Since graph-based approaches use graph as a repre-
sentation of an image, with the incensement of resolutions, di-
mensions, and modalities of medical images, the corresponding

nodes and edges are dramatically increased. Although paralleliz-
ing computation can release the computation burden in some ex-
tent [124]–[126], it will still be a problem in the future and limit
its clinical applications. Graph-based segmentation approaches
convert the medical image segmentation problem into an opti-
mization problem. However, most of the optimization problems
are NP-hard to solve. Even researchers try to find an approx-
imate optimal solutions, some of them may result undesirable
performance [68]. Another problem for GCs is the “small cut”
or shrinking behavior and leakages, which tends to have small
segmentations due to minimizing the sum of edge weights in
the cut [139].

In past decades, the research of GCs/ GS-based medical im-
age segmentation had been making progress and has been used
to solve many practical problems in medical image segmenta-
tion. In recent years, the emergence of new algorithms, such as
multimodality image technologies, hybrid method, deep learn-
ing, etc., provide wider research spaces for them and made the
use of GCs/ GS more flexible and more powerful. Noteworthy
is the deep learning approaches which achieve strong success
recently [129]. Many deep neural network models have been
adopted successfully in various fields. Recent works also ex-
tended deep learning technique to solve the complex medical
image segmentation problem, for example, brain tumor seg-
mentation problem [130], retinal blood segmentation problem
[131], pathologic OCT image classification problem [132], etc.
Among them, the combination of the deep learning and the tradi-
tional method is a new powerful technique which achieved high
performance in some aspects [133]–[136]. In recent published
work, Fang et al. [133] presented a novel framework, called
CNN-GS, integrating convolutional neural networks (CNN)
with GS method to segment nine-layer boundaries on retinal
optical coherence tomography images. Fig. 11 illustrates the
outline of the CNN-GS algorithm. CNN-GS method was com-
posed of two main steps. One is CNN layer boundary classifi-
cation and another is GS layer segmentation based on the CNN
probability maps. CNN was used to extract features of retinal
layer boundaries and train a classifier. Then, GS method used
the probability maps created by the CNN to detect the layer
boundary position. Sui et al. [134] proposed a similar method
for the choroid segmentation of OCT retinal images using



CHEN AND PAN: SURVEY OF GRAPH CUTS/GRAPH SEARCH BASED MEDICAL IMAGE SEGMENTATION 121

multiscale CNNs combined with GS. Lu et al. [135] devel-
oped a deep learning algorithm with GC refinement to segment
the liver in CT scans. 3-D convolutional neural network was ap-
plied to obtain an initial segmentation and learn probability map.
GC was then used to refine the initial segmentation. Mukherjee
et al. [136] proposed a framework for lung nodule segmentation
in CT scans using GC with deep learned prior. Their methods
embody the robustness of deep learning while retaining the ad-
vantage of the traditional-graph-based approaches. Experiment
results show that deep-learning-based methods can detect graph
structural characteristics and give promising results for graph
applications.

GCs and GS techniques are still promising methods for med-
ical image segmentation. Further research could be focused
on, first, cosegmentation techniques for multimodality medi-
cal images; second, hybrid methods that combine the advanced
techniques, such as CNN/deep learning technique, deformable
model technique, etc., with GCs/GS to overcome the weakness
of each component methods and achieve a more powerful seg-
mentation approach.
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